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Abstract

Video Diffusion Models have advanced video genera-
tion by integrating text and image conditioning, offering en-
hanced control over generated content. However, maintain-
ing consistency across frames remains a challenge, espe-
cially when using text prompts as control conditions. Some
approaches, like FreeInit, address this by iteratively updat-
ing the initial noise to ensure video consistency, while meth-
ods like UniCtrl employ Attention Control to maintain spa-
tiotemporal consistency. Yet, these techniques incur addi-
tional computational costs and inference time. Addressing
the need for stable and consistent video generation without
extra computational expense remains an open problem. In
this paper, we revisit the noise prior to the initialization gap
in video diffusion models and introduce a novel initializa-
tion method FastFreeInit. By partially sharing the initial
noise across different frames, we achieve enhanced consis-
tency and stability in video generation without additional
computational demands, as verified by our experiments.

1. Introduction
Diffusion Models (DMs) have demonstrated superior

performance in image synthesis, surpassing traditional
methods such as GANs [12, 25, 26] and VAEs [27, 37, 49]
in terms of stability and quality. Early research [19, 24,
29, 43–45] laid the essential groundwork for DMs, prov-
ing their effectiveness in scaling with varied datasets. Re-
cent innovations [30, 32, 36, 38, 40, 58, 60] have enhanced
their controllability and interaction with users, facilitating
the generation of images that more accurately align with
user specifications.

Recently developed Video Diffusion Models (VDMs)
[20] have employed Diffusion Models (DMs) for gener-
ating videos. VDMs demonstrate their ability to produce
videos depicting a range of motions in text-to-video synthe-
sis tasks, facilitated by the integration of text encoders [35],
as evidenced in works like [1, 2, 16, 18, 22, 59]. Various
open-source text-to-video models have emerged, such as
ModelScope [51], AnimateDiff [16], and VideoCrafter [6].

These models often rely on a pre-trained image genera-
tion model like Stable Diffusion (SD) [39] and incorporate
additional temporal or motion components. Despite this,
texts, unlike images which are rich in semantic content,
struggle to maintain frame-to-frame consistency in video
outputs. Concurrently, some research utilizes image con-
ditions to foster image-to-video transformations with en-
hanced spatial semantic consistency [1,15,23]. While there
are approaches proposing a text-to-image-to-video frame-
work [11], relying solely on image conditions often falls
short in controlling video motion. Combining both text and
image conditions enhances spatiotemporal consistency in
a mixed text-and-image-to-video process [6, 7, 14, 55, 61],
though these techniques necessitate additional training.

Currently, Video Diffusion Models (VDMs) typically in-
corporate additional temporal layers into a 2D UNet; how-
ever, this modification fails to adequately address cross-
frame constraints during the training of the 2D UNet model.
Various training-free methods, such as those documented in
recent research [8,13,34,54], have attempted to improve the
smoothness of generated videos by refining the start noise
or taking the use of attention control [4, 17, 48, 57]. Despite
these efforts, the challenge of maintaining consistent cross-
frame coherence in videos produced by VDMs remains un-
resolved. In this paper, we reevaluate the noise prior to the
initialization gap in video diffusion models and introduce a
new initialization technique, FastFreeInit. By sharing ini-
tial noise partially across different frames, we achieve en-
hanced consistency and stability in video generation with-
out imposing additional computational costs, as confirmed
by our experimental results.

2. Background
Video Generation Numerous studies have explored the
realm of video generation, employing various approaches
like GAN-based frameworks [3, 42, 47] and transformer-
based architectures [21, 50, 52, 53]. Building on the suc-
cess of Diffusion models (DMs) [19, 24, 29, 43–45], which
have delivered impressive outcomes in image synthesis
[31, 32, 36, 38, 40], video diffusion models (VDMs) [20]
have also showcased their prowess in generating videos



[2, 6, 7, 11, 14, 16, 18, 22, 41, 51, 55, 59].
Presently, VDMs typically integrate extra temporal lay-

ers into a 2D UNet, yet this adaptation does not sufficiently
address cross-frame constraints during the training of the
2D UNet model. Several techniques [8, 13, 34, 54] have
experimented with training-free approaches to enhance the
smoothness of the generated videos. Nonetheless, the chal-
lenge of maintaining consistent cross-frame coherence in
videos produced by VDMs persists.

Noise in Diffusion Models Only a few studies have high-
lighted the drawbacks in the noise schedules of existing dif-
fusion models. In the realm of image synthesis, [28] identi-
fies that traditional diffusion noise schedules do not entirely
obscure the information in natural images, which constrains
the model to produce only images of moderate brightness.
Building on this, [9] further investigates the issue of signal
leakage and introduces a method to explicitly model this
leakage for an improved inference noise distribution, result-
ing in images of greater brightness and color diversity.

In the context of video, PYoCo [10] meticulously for-
mulates a progressive video noise prior to enhanced video
generation. Echoing [28], PYoCo also emphasizes noise
schedule adjustments during the training phase and necessi-
tates extensive fine-tuning on video datasets. Recent initia-
tives [13,34] similarly focus on the initial noise at inference,
albeit with a goal of producing longer videos. FreeInit [54]
aims to elevate inference quality and further incorporates
tailored frequency-domain operations to adjust various fre-
quency components of the initial noise, but it needs addi-
tional computational costs and inference time.

3. Method
Although Video Diffusion Models (VDMs) have

achieved notable success in video generation, most open-
source VDMs still struggle with consistency and stability
in their generated videos. Research has indicated that the
consistency of VDM-generated videos can be influenced by
the initial noise [54], while inconsistencies in the attention
mechanism’s value can lead to unstable video outputs [8].
FreeInit [54] addresses this by iteratively updating the initial
noise to ensure consistency across frames, whereas UniC-
trl [8] enhances video quality by managing the consistency
of values within the attention mechanism. However, these
methods require additional inference time and computa-
tional resources. FreeInit involves multiple sampling pro-
cesses, and UniCtrl necessitates concurrent inference across
multiple branches. Given the substantial memory and com-
putation demands of VDMs, these additional costs are often
impractical. Therefore, exploring ways to enhance the con-
sistency and stability of video generation without increas-
ing computational costs remains a pressing issue. Our ap-
proach, inspired by PYoCo [10], mixes the noise from the

first frame with that of subsequent frames and, following
FreeInit [54], blends this combined noise at various fre-
quencies. This method achieves improved spatio-temporal
consistency in generated videos without additional compu-
tational overhead.

Noise Mixing Consider the scenario where
ε1, ε2, . . . , εns represent the specific noises associated
with each frame of a video, with εi being the ith noise
element in the noise tensor ε. Following PYoCo [10], we
define two distinct types of noise vectors: εshared and εind.
The vector εshared serves as a universal noise component
common to all frames, whereas εind consists of unique
noise vectors tailored to each individual frame. These
two vectors are then combined linearly to form the noise
applied to each frame.

Mathematically, this is described by the following for-
mulation:

εshared ∼ N

(
0,

α2

1 + α2
I

)
, εiind ∼ N

(
0,

1

1 + α2
I

)
(1)

εinew = εshared + εiind

This structure ensures that while each frame benefits
from a base level of commonality due to the shared noise, it
also preserves a degree of uniqueness through the individual
noise components, thus balancing consistency and variation
across the video sequence. Here, we use the noise of the
first frame from the latent as our shared ε.

Noise Reinitialization Like FreeInit [54], we utilize a
spatio-temporal frequency filtering technique, whereby we
amalgamate the low-frequency elements of the original
noise latent vector zT with the high-frequency elements of
a newly generated random Gaussian noise η. This yields
a dynamically reinitialized noisy latent vector z′T . By em-
ploying this method, we retain the critical information em-
bedded within the low-frequency components of zT , while
infusing variability in the high-frequency spectrum to en-
rich visual textures and details. The formulation of this pro-
cess is detailed in the following mathematical expressions:

FL
zT = FFT 3D(zT )⊙H, (2)

FH
η = FFT 3D(η)⊙ (1−H), (3)

z′T = IFFT 3D(FLzT + FHη), (4)

Here, FFT 3D denotes the Three-Dimensional Fast
Fourier Transformation applied across both spatial and tem-
poral dimensions, and IFFT 3D is the Inverse Fast Fourier
Transformation that reconstructs the combined latent z′T
from the frequency domain to the time-space domain. The
filter H represents a Spatial-Temporal Low Pass Filter
(LPF), designed to match the dimensions of the latent, fa-
cilitating selective frequency blending.
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Figure 1. The overview method of FastFreeInit.

FastFreeInit To improve the consistency of videos in
text-to-video tasks, we focus on manipulating the initial
noise. According to Ge et al. [10], controlling the initial
noise may sometimes result in sub-optimal consistency of
the generated videos. Our method for manipulating initial
noise is structured into two distinct steps:

1) Adopting the Mixed Noise Model methodology pro-
posed by Ge et al. [10], we control the noise for each frame
as comprising both shared and independent components.
The shared component is directly sourced from the noise of
the first frame, while the independent component consists of
initial random noise. Consequently, the noise for each sub-
sequent frame is composed of the first frame’s noise com-
bined with its original random noise. The corresponding
formula is presented as 1 and the formula applied is

εinew =
α2

1 + α2
∗ ε1 + (1− α2

1 + α2
) ∗ εiorignal

2) Building on the findings of Wu et al., substantial
spatio-temporal correlations exist within the low-frequency
components, we extend those correlations from the first
frame to others like 2. Therefore, we preserve the low-
frequency components of the noise processed in the first
step, adding the original latent high-frequency components.

Here is the full algorithm:

Algorithm 1 FastFreeInit Algorithm

1: latents← random noisesforallframes
2: latentslow ← the first frame of latents

3: a← α2

1+α2 and b← 1− a
4: latentslow ← a× latentslow + b× latents
5: latents← freq mix 3d(latentslow, latents)

Implement Details We began with the official repository
of FreeInit [54] and integrated our FastFreeInit pipeline
based on the FreeInit template, incorporating an initial noise
control algorithm prior to the denoising step. We utilized
the formula and the freq mix 3d function from FreeInit to

manage the noise control. We ensured that the initial ran-
dom noise was consistent across all three approaches and
timed them within the main program. The core code is de-
tailed in the appendix.

For the evaluation phase, we employed relevant models
from Hugging Face to assess various metrics. We simul-
taneously generated and evaluated those videos with the
prompt text. The relevant code is provided in the appendix
for further reference.

4. Results

To assess the effectiveness of our model, we utilize
prompts from two datasets: UCF-101 [46] and MSR-VTT
[56] to generate videos. In line with the approach of Ge
et al [10] and Chen et al [8], we employ identical prompts
from the UCF-101 dataset for our experiments. Addition-
ally, we select 100 unique prompts from the MSR-VTT
dataset to further evaluate our model. These selections form
our comprehensive dataset for evaluation. Next, we provide
a brief introduction to evaluation metrics and backbone.

4.1. Metric

To quantitatively measure the performance of our model,
we employ standard metrics as outlined in [41, 54].

• Clip Similarity: To measure the relevance between
videos and texts, we compute the average Clip Similar-
ity [52] for each generated video with their corresponding
prompt. We calculate the score by averaging Clip Similar-
ity for each frame in the video with its prompt. In our ex-
periment, we compute the CLIP similarity utilizing Torch-
Metrics with clip-vit-base-patch32 model [35].
• DINO: To assess the spatiotemporal consistency of the

generated videos, we utilize DINO [33] to compute the co-
sine similarity between the initial frame and subsequent
frames. The average DINO score across all consecutive
frames is then used as the video’s overall score. In our ex-
periments, we utilize the DINO-vits16 [5] model to com-
pute the DINO cosine similarity.
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Figure 2. Qualitative Comparisons



Table 1. Quantitative Comparisons on UCF-101 and MSR-VTT. FastFreeInit significantly improves the temporal consistency without
adding too much extra time for generating video. I indicates the number of iterations for FreeInit.

Method CLIP (↑) DINO (↑) Time (↓)
AnimateDiff [16] 95.18 97.18 74.40s
FreeInit + AnimateDiff (I = 3) 96.95 98.32 218.91s
FastFreeInit + AnimateDiff 97.69(+00.74) 99.11(+00.79) 74.40s(−141.51s)

4.2. Backbones

Given the plug-and-play nature of our approach, we
opted to test our methods using AnimateDiff. AnimateD-
iff [16] provides a practical framework to impart motion
dynamics into personalized text-to-image models like those
developed through Stable Diffusion. This is achieved with-
out necessitating adjustments specific to each model. At the
core of AnimateDiff lies a motion module. Once trained,
this module can be universally applied to various person-
alized text-to-image models that share the same founda-
tional model, utilizing transferable motion priors derived
from real-world videos to enable animation.

4.3. Baseline

We chose FreeInit as our baseline because it is a training-
free method that aims to enhance the appearance and tem-
poral consistency of generated videos. It does this by iter-
atively refining the spatial-temporal low-frequency compo-
nents of the initial latent code during inference. Given that
both FreeInit and FastFreeInit are training-free methods de-
signed to improve spatiotemporal consistency in video gen-
eration through diffusion models, it is logical to compare
the performance of FastFreeInit against FreeInit.

4.4. Qualitative Comparisons

For qualitative comparisons, shown in Figure 2, reveal
that our FastFreeInit method markedly improves spatiotem-
poral consistency and adheres closely to the text. For in-
stance, using the text prompt ’A man narrates his Minecraft
gameplay’, the standard AnimateDiff method would cause
abrupt transitions from a green-black box to a blue pool. In
contrast, FastFreeInit maintains greater consistency with the
elements. Additionally, FreeInit would have the ground de-
tails change inconsistently, whereas FastFreeInit preserves
better consistency in these feature details as well. Further-
more, FastFreeInit is more aligned with the prompt, as it
avoids visualizing the narrator, which is implied by the text
that the man should not appear in the video. Both Normal
AnimateDiff and FastFreeInit cause Minecraft characters to
appear in the video.

4.5. Quantitative Comparisons

For quantitative comparisons, the results for UCF-101
and MSRVTT are presented in Table 1. We compare

the base backbone with it augmented by FastFreeInit and
FreeInit, respectively. The result demonstrates that our
FastFreeInit method significantly enhances spatiotemporal
consistency and preserves the meaning of text within the
video. Additionally, it offers substantial time savings com-
pared to the FreeInit method while improving both CLIP
and DINO scores. The improvement in the CLIP score
from 96.95 to 97.69 suggests that our method adheres more
closely to the prompt instructions than the original method
and FreeInit. Furthermore, the enhancement in the DINO
score from 98.32 to 99.11 indicates that our method im-
proves video consistency over the other two methods. In
conclusion, our FastFreeInit method outperforms the other
approaches in these three critical aspects.

5. Conclusion
We present FastFreeInit as a novel solution aimed at en-

hancing cross-frame consistency and stability in Video Dif-
fusion Models without the need for additional training. By
ingeniously managing the initial noise distribution across
frames, FastFreeInit significantly improves the spatiotem-
poral consistency in generated videos. This method is dis-
tinguished by its ease of integration with existing models
and does not require extensive fine-tuning, ensuring broad
applicability across different video generation frameworks.
The performance of FastFreeInit has been thoroughly vali-
dated through rigorous testing, confirming its effectiveness
and showcasing its potential as a versatile tool for video
generation models.
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A. Core Algorithm Code

latents_low = latents[:, :, 0, :, :]
z_T = latents_low.unsqueeze(2).expand(-1, -1, latents.shape[2], -1, -1)

alpha_sqr = alpha * alpha
a = alpha_sqr / (1 + alpha_sqr)
b = 1 - a
z_T = a * z_T + b * latents

latents = freq_mix_3d(
z_T.to(dtype=torch.float32), latents, LPF=self.freq_filter

)

B. Evaluation Code

device = torch.device(’cuda’ if torch.cuda.is_available() else "cpu")
processor_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)

processor_dino = ViTImageProcessor.from_pretrained("facebook/dino-vits16")
model_dino = ViTModel.from_pretrained("facebook/dino-vits16").to(device)

def clip_score(outputs, processor, model, device):
image_features = []
with torch.no_grad():

for output in outputs:
input_tmp = processor(images=output, return_tensors="pt").to(device)
image_feature = model.get_image_features(**input_tmp)
image_features.append(image_feature)

cos = nn.CosineSimilarity(dim=0)
Clip = 0
for i in range(1,len(image_features)):

sim = cos(image_features[i-1][0],image_features[i][0]).item()
sim = (sim+1)/2
Clip += sim

return Clip / 15

def dino_score(outputs, processor, model, device):
image_features = []
with torch.no_grad():

for output in outputs:
input_tmp = processor(images=output, return_tensors="pt").to(device)
image_feature = model(**input_tmp).last_hidden_state
image_feature = image_feature.mean(dim=1)
image_features.append(image_feature)

cos = nn.CosineSimilarity(dim=0)
Dino = 0
for i in range(1,len(image_features)):

sim = cos(image_features[i-1][0],image_features[i][0]).item()
sim = (sim+1)/2
Dino += sim

return Dino / 15
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